Quark-Forth

1.0.10 build 28

1. Назначение и основные характеристики

Quark-Forth (quark) — 32-разрядный транслятор языка Форт (Forth), предназначенный для работы в ОС Windows. Преимущественное назначение — реализация форт-машины с помощью динамически загружаемой библиотеки. Минимальный вариант транслятора представляет собой единственный файл quark.dll.

Основные особенности:

- · Машинный код
- Вычисления с плавающей точкой на базе сопроцессора
- · Работа с двумерной и трехмерной графикой с помощью библиотеки OpenGL
- · Возможность встраивания в программы или самостоятельной работы (в ехеварианте)

Quark написан на fasm 1.67 и реализует машинный код с раздельными областями кода и данных. Выделяемая при старте память составляет 1 Мб и 256 Мб соответственно и может быть дополнительно выделена средствами ОС (GlobalAlloc). Если при старте не удается выделить 256 Мб памяти данных, производится попытка выделения 4 Мб. Стековая машина реализована путем эмуляции стеков в памяти.

Стек данных – 2048 ячеек с указателем вершины в памяти.

Стек возвратов – системный стек, адресуемый регистром ESP

Стек чисел с плавающей точкой – аппаратный стек сопроцессора (8 ячеек).

Стек структур управления (control-flow) – максимум 1024 уровня.

- Адрес
- Идентификатор структуры управления

Стек циклов – максимум 256 уровней вложенности.

- · Счетчик цикла
- Максимальное значение счетчика
- · Адрес для перехода

Стек контекстов загрузки – максимум 32 уровня вложенности.

Форт-машина работает посредством трансляции строк, передаваемых вызывающей программой при помощи функции Evaluate, которая принимает в качестве аргумента указатель на ASCIIZ строку и возвращает 0 в случае успеха, или номер символа, при обработке которого возникла ошибка. Формат вызова – register, т.е. указатель передается в регистре еах, результат возвращается там же.

Quark реализует виртуальный экран в памяти — массив точек 2048x2048x32bpp, доступный для чтения внешней программой, которая ответственна за правильное отображение выведенной информации. В dll встроен знакогенератор формата 8x16 пикселов в кодировке Win1251.

Кроме dll, quark существует в формате ехе-файла для работы в качестве оконного приложения с графической консолью. При этом рабочая область окна представляет собой поверхность OpenGL, которая воспроизводит внутренний виртуальный экран и позволяет наложить поверх него трехмерную сцену, задаваемую пользователем с помощью векторизованного слова 3D. В том же окне реализована текстовая консоль, которая также обрабатывает сообщения от функциональных клавиш и мыши, вызывая соответствующие векторизованные слова, что позволяет гибко настраивать реакцию системы на действия пользователя в процессе работы с консолью.

Quark-Forth распространяется бесплатно, без предоставления исходных текстов. Декомпиляция, дизассемблирование или внесение изменений в программу любыми способами запрещены и лишают пользователя права на использование продукта.

Установка

Quark.dll не требует установки или регистрации в системе. Для работы достаточно поместить библиотеку в папке проекта или в папке, доступной для загрузки.

Используются следующие файлы:

Kernel32.dll

User32.dll

Gdi32.dll

Opengl32.dll

Glu32.dll

Quark.exe также не требует установки и использует те же библиотеки, что и quark.dll. Наличие самой библиотеки quark.dll при этом не требуется.

2. Взаимодействие с программным окружением

Ouark.dll экспортирует следующие функции.

Имя	Описание
Evaluate(s : lpstr)	Транслирует строку, заданную указателем на первый символ и завершаемую нулем (ASCIIZ). Возвращает 0 при успешной трансляции или номер символа, при обработке которого обнаружена ошибка. Формат вызова – register (указатель на строку ожидается в регистре eax)
Init	Выделяет память кода и данных, инициализирует форт-машину
Done	Освобождает память кода и данных
GetCode	Возвращает указатель на область памяти кода
GetData	Возвращает указатель на область памяти данных
GetStack	Возвращает указатель на начало стека. Стек растет вверх
GetDepth	Возвращает текущую глубину стека (в ячейках). Верхнее число на стеке находится по адресу GetStack + (GetDepth - 1)*4
GetScreen	Возвращает указатель на область памяти виртуального экрана
SetHWindow(x :	Устанавливает системную переменную hwnd, представляющую
hwnd)	собой указатель на окно форт-машины. Используется, если
	программе-владельцу dll необходимо перенаправить поток вывода.
	Примечание: зарезервировано для последующих версий, при
	работе с dll переменная hwnd не используется.

Объявления функций:

function Evaluate(s: integer): integer; external 'quark.dll';

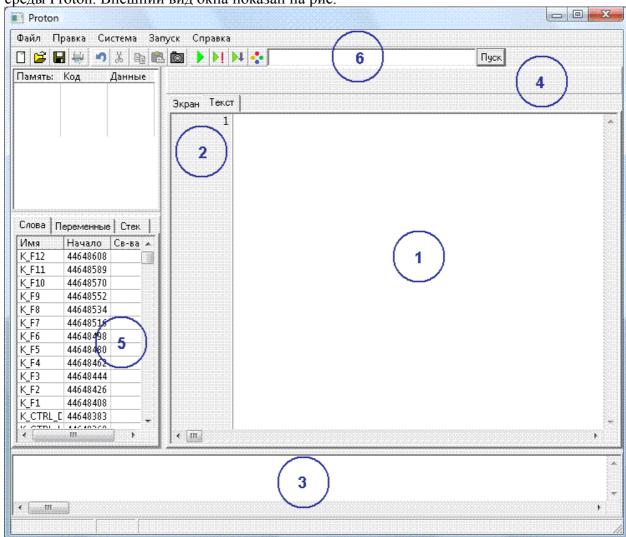
function Init(): integer; external 'quark.dll';

function Done(): integer; external 'quark.dll';

function GetCode(): integer; external 'quark.dll';

function GetData(): integer; external 'quark.dll';

function GetStack(): integer; external 'quark.dll';


function GetDepth(): integer; external 'quark.dll';

function GetScreen(): integer; external 'quark.dll';

function SetHWindow(hwnd: integer): integer; external 'quark.dll';

Все функции используют формат вызова register (параметр передается в еах, результат возвращается в еах). При работе регулярно вызывается векторное слово <TIMER>, интервал вызова которого задается системной переменной TIMER-INTERVAL (в миллисекундах). В качестве среды разработки используется приложение Proton, написанное в среде Lazarus. Оно реализует оконную IDE, позволяющую редактировать исходный текст программы на Форте, запускать dll или ехе-версию Quark, просматривать содержимое виртуального экрана (только 2D) в отдельной закладке рабочего пространства

Цифрами обозначены:

- 1 Редактор исходного текста
- 2 Переключение закладок с редактором и содержимым виртуального экрана
- 3 Консоль
- 4 Панель настраиваемых инструментальных кнопок (настройка по правой кнопке мыши)
 - 5 Просмотр содержимого словаря и стека
 - 6 Кнопки быстрого запуска и консоль форт-машины

3. Описание слов

Соглашения

В стековой нотации используются следующие соглашения.

Стековая нотация представлена в виде:

<Состояние стека до выполнения слова>-<состояние стека после выполнения слова>

Вершина стека находится справа, т.е. запись 23-5 означает, что до выполнения слова на вершине стека находилось число 3, а под ним число 2; после выполнения эти числа оказались удалены, а на вершине вместо них оказалось число 5.

Если исполняемое слово влияет на стек возвратов, его состояние записывается после символов «R:». Если исполняемое слово влияет на стек чисел с плавающей точкой, его состояние записывается после символов «F:»

Данные на стеке представлены, как правило, буквами латинского алфавита. В отдельных случаях используются обозначения, отражающие характер представленных величин. Например:

Addr – адрес
Data – данные
T – логическое значение (истина/ложь)
Cnt, counter – значение счетчика
uA – беззнаковая интерпретация числа A
S, str - строка

hFile – индекс файла

Форматы данных

Основным форматом представления чисел является 32-разрядное целое число, занимающее одну ячейку (cell) стека данных. По умолчанию число рассматривается как представленное в дополнительном двоичном коде. При необходимости использовать числа меньшей разрядности активными являются младшие разряды числа. При записи числа меньшей разрядности прочие форматы игнорируются, при чтении числа на стек – заполняются нулями.

Основным форматом представления чисел с плавающей точкой является число двойной точности (double precision), занимающее 8 байт памяти. Возможны чтение и запись чисел одинарной точности (single precision, также short float), занимающих 4 байта. При этом необходимо иметь в виду, что все операции на стеке сопроцессора происходят во внутреннем представлении (comp), занимающем 80 бит, и преобразуются в числа двойной или одинарной точности только при записи в память.

Основным форматом представления строк является строка, завершаемая байтом 0 (ASCIIZ строка). Адресом строки считается адрес ее первого символа. При создании строки перед ней предварительно размещается 4-байтный счетчик символов.

При вычислении логических выражений любое ненулевое значение считается ИСТИНОЙ, нулевое – ЛОЖЬЮ.

Прочие форматы представления данных зависят от используемых библиотек и функций. Кварк не использует методы статического или динамического контроля типов значений на стеках. Например, не контролируется «помещение на целочисленный стек вещественного числа, прочитанного как целое», или арифметические операции с указателями.

Для упрощения работы со словами, активно использующими стековые перестановки, введен локальный стек. Он представляет собой статически выделенный, глобальный массив памяти, способный хранить 8-байтные значения, что позволяет помещать на него как целые числа, так и числа в формате с плавающей точкой.

Слова для работы со стеком

Имя	Стековая нотация	Описание
DUP	A - A, A	Дублирование числа на вершине стека
DROP	A -	Удаление числа с вершины стека
SWAP	A, B-B, A	Обмен верхних чисел на вершине стека
OVER	A, B – A, B, A	Копирование на вершину стека второго сверху числа
ROT	A, B, C – B, C, A	Вращение трех верхних чисел в соответствии со
1101		стековой нотацией
NIP	A, B – B	Удаление второго сверху числа
PICK	An A1, A0, n –	Копирование на вершину стека числа, отстоящего на
	An A1, A0, An	п от вершины стека
XCHG	An A1, B, n –	Обмен числа на вершине стека и числа, отстоящего
	B, An-1, A1, An	на п от вершины стека
>R	A – R : A	Перемещение числа с вершины стека данных на
		вершину стека возвратов
R>	R: A – A	Перемещение числа с вершины стека возвратов на
		вершину стека данных
R@	R: A – A, R: A	Копирование числа с вершины стека возвратов на
		вершину стека данных
RDROP	R: A – R:	Удаление числа с вершины стека возвратов
DEPTH	D	Помещение на стек количества чисел до
		выполнения этого слова
LOCALDEPT	D	Помещение на стек количества чисел на локальном
Н		стеке до выполнения этого слова
CLEARSTAC	An A0	Очистка стека
K		
FDUP	F: A – F: A, A	Дублирование числа на вершине стека сопроцессора
F2DUP	F: A, B-F: A, B, A,	Дублирование пары чисел на вершине стека
	В	сопроцессора
FDROP	F: A -	Удаление числа с вершины стека сопроцессора
FSWAP	F: A, B – F: B, A	Обмен верхних чисел на стеке сопроцессора
FOVER	F: A, B – F: A, B, A	Копирование на вершину стека сопроцессора второго сверху числа
FROT	F: A, B, C – F: B, C,	Вращение трех верхних чисел на стеке
	A	сопроцессора в соответствии со стековой нотацией
>L	A – L: A	Переместить число со стека данных на локальный стек
L>	L: A A	Переместить число с локального стека на стек данных
L@	L: A – A, L: A	Скопировать число с локального стека на стек
LDROP	L: A	Данных Упадилу имене с нокан исго стака
L>F	L: A L: A - F: A	Удалить число с локального стека
	L.A-r.A	Переместить число с локального стека на стек сопроцессора в формате двойной точности
F>L	F: A – L: A	Переместить число со стека сопроцессора на
1 ~ L	1.A-L.A	локальный стек в формате двойной точности
L>SF	L: A – F: A	Переместить число с локального стека на стек
L/ DI	$\begin{bmatrix} L, A-\Gamma, A \end{bmatrix}$	сопроцессора в формате одинарной точности
SF>L	F: A – L: A	Переместить число со стека сопроцессора на
) D1 ~ L	I.A L.A	локальный стек в формате одинарной точности
FRAME{		Отметить положение стекового кадра
TIMMID	1	отметить положение стекового кадра

}FRAME	 Удалить запись о стековом кадре
ARG0 ARG9	Положить на стек число, находящееся на 09 ячеек
	от вершины стека, как она была запомнена словом
	FRAME{

Арифметика и логика

Имя	Стековая	Описание
	нотация	
+	A, B – A+B	Сложение верхних чисел на стеке
-	A, B – A-B	Вычитание верхних чисел на стеке
1+	A – A+1	Прибавление 1 (инкремент) к верхнему числу на
		стеке
1-	A – A-1	Вычитание 1 (декремент) из верхнего числа на стеке
CELL+	A-A+4	Прибавление 4 (размера ячейки в байтах) к
		верхнему числу на стеке
CELL-	A-A-4	Вычитание 4 (размера ячейки в байтах) их верхнего
ECEL I	A A . O	числа на стеке
FCELL+	A-A+8	Прибавление 4 (размера числа с плавающей точкой
ECELI	A – A-8	в байтах) к верхнему числу на стеке
FCELL-	A – A-8	Вычитание 4 (размера числа с плавающей точкой в
*	A D A*D	байтах) их верхнего числа на стеке
U*	A, B – A*B	Умножение верхних чисел на стеке
/	A, B - uA*uB	Беззнаковое умножение верхних чисел на стеке
/ T.T./	A, B - A/B	Деление верхних чисел на стеке
2*	A, B - uA/uB	Беззнаковое деление верхних чисел на стеке
	A - A*2	Быстрое умножение на 2 верхнего числа на стеке
2/	A - A/2	Быстрое деление на 2 верхнего числа на стеке
MOD	A, B – A mod B	Остаток от деления верхних чисел
UMOD	A, B – uA mod uB	Остаток от беззнакового деления верхних чисел
/MOD	$\begin{bmatrix} A, B - A/B, A \mod \\ B \end{bmatrix}$	Частное и остаток от деления верхних чисел
U/MOD	A, B – uA/uB, uA	Частное и остаток от беззнакового деления верхних
	mod uB	чисел
AND	A, B – A and B	Побитное И над верхними числами
OR	A, B – A or B	Побитное ИЛИ над верхними числами
XOR	A, B – A xor B	Побитное ИСКЛЮЧАЮЩЕЕ ИЛИ над верхними
		числами
SHL	A - B	Логический сдвиг верхнего числа влево на 1 разряд
SHLA	A - B	Арифметический сдвиг верхнего числа влево на 1
		разряд
SHR	A - B	Логический сдвиг верхнего числа вправо на 1
		разряд
SHRA	A - B	Арифметический сдвиг верхнего числа вправо на 1
		разряд
LSHIFT	A, count – B	Логический сдвиг числа A на count разрядов влево
RSHIFT	A, count - B	Логический сдвиг числа A на count разрядов вправо

<<	A, count – B	Логический сдвиг числа A на count разрядов влево. То же, что LSHIFT
>>	A, count - B	Логический сдвиг числа A на count разрядов вправо. То же, что RSHIFT
NEGATE	AA	Изменение знака числа на вершине стека
ABS	A - A	Модуль числа на вершине стека
SGN	A1 0 1	Заменяет число на вершине стека значением -1,
		если число отрицательное, нулем, если число равно нулю, и 1, если число положительное
NOT	A - B	Логическое НЕ числа на вершине стека (0 заменяется на -1, остальные значения заменяются на 0)
WITHIN	A, MIN, MAX - T	Проверка попадания числа А в диапазон MIN, MAX (включительно), оставляет на стеке ИСТИНУ, если А находится в указанном диапазоне
=	A, B – T	Проверка равенства двух верхних чисел. Оставляет на стеке ИСТИНУ, если числа были равны
>	A, B – T	Проверка отношения «БОЛЬШЕ» двух верхних чисел. Оставляет на стеке ИСТИНУ, если А>В
<	A, B – T	Проверка отношения «МЕНЬШЕ» двух верхних чисел. Оставляет на стеке ИСТИНУ, если А<В
>=	A, B – T	Проверка отношения «БОЛЬШЕ ИЛИ РАВНО» двух верхних чисел. Оставляет на стеке ИСТИНУ, если А>=В
<=	A, B – T	Проверка отношения «МЕНЬШЕ ИЛИ РАВНО» двух верхних чисел. Оставляет на стеке ИСТИНУ, если А<=В
\Diamond	A, B – T	Проверка неравенства двух верхних чисел. Оставляет на стеке ИСТИНУ, если числа не были равны
U>	A, B – T	Проверка отношения «БОЛЬШЕ» двух верхних чисел, рассматриваемых как числа без знака. Оставляет на стеке ИСТИНУ, если А>В
U<	A, B - T	Проверка отношения «МЕНЬШЕ» двух верхних чисел, рассматриваемых как числа без знака. Оставляет на стеке ИСТИНУ, если А<В
MIN	A, B – Min	Выбор минимального из двух верхних чисел на стеке.
MAX	A, B – Max	Выбор максимального из двух верхних чисел на стеке.
RANGE	A, MIN, MAX - B	Коррекция числа А таким образом, чтобы оно гарантированно находилось в интервале MINМАХ (включительно).
UMIN	A, B – C	Выбор минимального из двух верхних чисел на стеке. Числа рассматриваются как беззнаковые.
UMAX	A, B – C	Выбор максимального из двух верхних чисел на стеке. Числа рассматриваются как беззнаковые.
URANGE	A, MIN, MAX - B	Коррекция числа А таким образом, чтобы оно гарантированно находилось в интервале MINМАХ (включительно). Числа рассматриваются как беззнаковые.

RGB	R, G, B - color	Вычисление цвета по компонентам R, G, В
BYTES	A-A	Дать число байтов для хранения A (не меняет число на стеке)
WORDS	A-A*2	Дать число байтов для хранения А слов
CELLS	A-A*4	Дать число байтов для хранения А двойных слов
FLOATS	A-A*8	Дать число байтов для хранения А чисел с
		плавающей точкой двойной точности
W>D	wA - A	Преобразовать слово на стеке в двойное слово знакорасширением
-TH	A, INDEX – Adr	По начальному адресу массива А и индексу элемента INDEX вернуть адрес этого элемента (каждый элемент занимает 4 байта)
-FTH	A, INDEX - Adr	По начальному адресу массива А и индексу элемента INDEX вернуть адрес этого элемента (каждый элемент занимает 8 байт)
S>F	A – F: X	Число со стека данных перенести на стек сопроцессора
F>S	F: X – A	Число со стека сопроцессора перенести на стек данных
F+	F: A, B – F: A+B	Сложить два числа с плавающей точкой на стеке сопроцессора
F-	F: A, B – F: A-B	Вычесть два числа на стеке сопроцессора
F*	F: A, B – F: A*B	Перемножить два числа на стеке сопроцессора
F/	F: A, B – F: A/B	Дать частное от деления двух чисел на стеке сопроцессора
FSIN	$F: X - F: \sin(X)$	Вычислить синус от аргумента на стеке сопроцессора
FCOS	$F: X - F: \cos(X)$	Вычислить косинус от аргумента на стеке сопроцессора
FSINCOS	$F: X - F: \sin(X), \\ \cos(X)$	Вычислить синус и косинус от аргумента на стеке сопроцессора (операция выполняется быстрее, чем раздельное вычисление синуса и косинуса)
FSQRT	$F: X - F: \operatorname{sqrt}(X)$	Вычислить квадратный корень от числа на стеке сопроцессора
FATAN	$F: X - F: \operatorname{arctan}(X)$	Вычислить арктангенс от числа на стеке сопроцессора
FPATAN	F: X, Y – F: arctan(X/Y)	Вычислить арктангенс от отношения двух чисел на стеке сопроцессора. Допускается задавать У равным 0
FABS	F: X – F: X	Абсолютное значение (модуль) от числа на стеке сопроцессора.
FNEGATE	F: X – F: -X	Изменение знака числа на стеке сопроцессора
F0>	F: X – T	На стек данных кладется результат логического выражения «число на стеке сопроцессора больше нуля»
F0<	F: X – T	На стек данных кладется результат логического выражения «число на стеке сопроцессора меньше нуля»
F0=	F: X – T	На стек данных кладется результат логического выражения «число на стеке сопроцессора равно

		нулю»
F>	F: A, B – T	На стек данных кладется результат логического
	1. A, D = 1	
		1
F<	E.A.D. T	сопроцессора больше, чем первое»
F<	F: A, B – T	На стек данных кладется результат логического
		выражения «второе сверху число на стеке
		сопроцессора меньше, чем первое»
F=	F: A, B – T	На стек данных кладется результат логического
		выражения «два верхних числа на стеке
		сопроцессора равны»
F2^X	F: X – F: 2^X	Вычислить 2 ^X (учитывается и целая, и дробная части X)
FEXP	F: X - F: exp(X)	Вычислить $\exp(X)$ (учитывается и целая, и дробная
		части Х)
FGAUSS	F: X, S – F:	Вычислить функцию $\exp((x/s)^2)$
	$\exp(X/S)^2$	1) , 1 ((11)
FLOG2	$F: X - F: \log_2(X)$	Вычислить логарифм от Х по основанию 2
FLN	$F: X - F: \ln(x)$	Вычислить натуральный логарифм от Х
FLG	$F: X - F: \log 10(X)$	Вычислить логарифм от Х по основанию 10
X*X	A1, A2, N-F: X	Вычислить свертку (сумму произведений
AA	$A_1, A_2, N-1 \cdot A$	соответствующих элементов) массивов, заданных
		· · · · · · · · · · · · · · · · · · ·
		начальными адресами A1, A2, длиной N элементов.
		Элементы первого массива – слова (16-разрядные
		числа), элементы второго массива – числа с
D*D	A1 A2 N F W	плавающей точкой в формате short float (4 байта)
D*D	A1, A2, N – F: X	Вычислить свертку (сумму произведений
		соответствующих элементов) массивов, заданных
		начальными адресами A1, A2, длиной N элементов.
		Элементы массивов – числа с плавающей точкой в
		формате double
SSE:F(T)*G(T)D	A1, A2, N -	Вычислить свертку (сумму произведений
T	xmm0:	соответствующих элементов) массивов, заданных
	X	начальными адресами A1, A2, длиной N*4
		элементов. Элементы массивов - числа с
		плавающей точкой в формате short float (4 байта).
		Операция производится с использованием
		инструкций расширения SSE, работающих с
		четверками чисел short float.
		Рекомендуется выравнивать адреса массивов на
		границу 16 байт для получения максимальной
		производительности. Результат находится в
		регистре хmm0 (частичные суммы свертки).
SSE!	A -	Регистр хтт0 записать по адресу А.
COD.EXT. EXT.	A1 A2 N	Записываются четыре числа в формате short float
SSE:[X]+=[Y]	A1, A2, N -	Добавляет элементы массива, начинающегося с
		адреса А2, к соответствующим элементам массива,
		начинающимся с адреса A1. Размеры массивов – N
		четверок (N*4 чисел) в формате short float.
		Операция производится с использованием
		инструкций расширения SSE.

Операции с памятью

Имя	Стековая	Описание
	нотация	
<u>@</u>	A-D	Читать из памяти число D по адресу А
!	D, A -	Записать в память по адресу А число D
+!	D, A -	Прибавить к содержимому памяти по адресу А число D
ON	A -	Записать ИСТИНУ (-1) в ячейку памяти с адресом А
OFF	A -	Записать ЛОЖЬ (0) в ячейку памяти с адресом А
F@	A – F: X	Читать из памяти с адресом А число двойной точности и положить его на стек сопроцессора
F!	A, F: X -	Записать число со стека сопроцессора в память по адресу А в формате вещественного числа двойной точности
F+!	A, F: X -	Прибавить число со стека сопроцессора к числу в памяти по адресу А в формате вещественного числа двойной точности
SF@	A – F: X	Читать из памяти с адресом А число одинарной точности и положить его на стек сопроцессора
SF!	A, F: X -	Записать число со стека сопроцессора в память по адресу А в формате вещественного числа одинарной точности
SF+!	A, F: X -	Прибавить число со стека сопроцессора к числу в памяти по адресу А в формате вещественного числа одинарной точности
,	D -	Перенести число со стека данных в память данных
C,	bD -	Перенести один байт со стека данных в память данных
W,	wD -	Перенести одно слово со стека данных в память данных
F,	F: X -	Перенести число двойной точности со стека сопроцессора в память данных
SF,	F: X -	Перенести число одинарной точности со стека
Ca	A – D	сопроцессора в память данных
C@ C!	D, A -	Читать из памяти байт D по адресу A Записать в память по адресу A байт D
[C]@	D, A - D	Читать из память по адресу A оаит D Читать из памяти число D по адресу A
	D, A -	Записать в память по адресу А число D
[C]!	D, A -	1 -
[C],		Перенести число со стека данных в память кода
[C]C(a)	A-D	Читать из памяти байт D по адресу A
[C]C!	D, A -	Записать в память по адресу А байт D
[C]C,	D -	Перенести байт со стека данных в память кода
W@	A – D	Читать из памяти слово D по адресу A
W!	D, A -	Записать в память по адресу А слово D
MOVE	Src, dest, len	Скопировать len ячеек из области памяти с
		начальным адресом Src в область памяти с
		начальным адресом dest.

CMOVE	Src, dest, len	Скопировать len байтов из области памяти с начальным адресом Src в область памяти с начальным адресом dest.
SMOVE	Src, dest	Скопировать строку области памяти с начальным адресом Src в область памяти с начальным адресом dest. Признаком завершения копирования является байт 0.
MOVE<	Src, dest, len	Скопировать len ячеек из области памяти с начальным адресом Src в область памяти с начальным адресом dest, начиная с конца области памяти.
CMOVE<	Src, dest, len	Скопировать len байтов из области памяти с начальным адресом Src в область памяти с начальным адресом dest, начиная с конца области памяти.
SMOVE<	Src, dest	Скопировать строку области памяти с начальным адресом Src в область памяти с начальным адресом dest. Признаком завершения копирования является байт 0.
CCOMPARE	A1, A2, count F	Сравнить области памяти, заданные адресами A1 и A2 и длиной count байт. Вернуть на стеке ИСТИНУ, если области идентичны и ЛОЖЬ в противном случае.
S=	A1, A2 - F	Сравнить строки, заданные адресами A1 и A2. Строка, заданная адресом A1, должна завершаться нулем. Вернуть на стеке ИСТИНУ, если строки, не включая ограничитель, идентичны.
FILL	D, A, len	Заполнить область памяти с начальным адресом А и длиной len ячеек значением D
CFILL	bD, A, len	Заполнить область памяти с начальным адресом А и длиной len байт значением bD
ALLOT	D -	Изменить указатель свободного байта памяти данных на D
[C]ALLOT	D -	Изменить указатель свободного байта памяти кода на D
INPORT	A – D	Положить на стек байт D, прочитанный из порта BB с адресом A. Порт должен быть доступен приложению для чтения.
INPORTW	A – D	Положить на стек слово D, прочитанное из порта BB с адресом A. Порт должен быть доступен приложению для чтения.
INPORTD	A – D	Положить на стек двойное слово D, прочитанное из порта BB с адресом A. Порт должен быть доступен приложению для чтения.
OUTPORT	D, A -	Записать в порт ВВ с адресом А байт D. Порт должен быть доступен приложению для записи.
OUTPORTW	D, A -	Записать в порт ВВ с адресом А слово D. Порт должен быть доступен приложению для записи.
OUTPORTD	D, A -	Записать в порт ВВ с адресом А двойное слово D. Порт должен быть доступен приложению для записи.

Системные переменные и предопределенные константы

Имя	Размер, байт	Описание
STATE	4	Состояние транслятора
SIAIL	-	(0 - интерпретация/1 - компиляция)
BASE	4	Основание системы счисления
LIMIT	4	Размер области памяти данных
[C]LIMIT	4	Размер области памяти кода
GETSTACK	•	Начальный адрес стека данных (стек растет вверх)
GETCODE		Начальный адрес области памяти кода
GETDATA		Начальный адрес области памяти данных
CONTEXT	4	Указатель на контекстный словарь
CURRENT	4	Указатель на текущий словарь
SOURCE	4	Идентификатор транслируемого файла
SDEPTH	4	Глубина стека контекстов загрузки
DEBUG	4	Флаг, означающий, что после компиляции каждого
		слова требуется компиляция вызова векторного
		слова DEBUG. Служит для организации отладки
		программы.
PROCESSED	4	Флаг, означающий, что обработчик сообщений
		Windows, установленный пользователем,
		обработал сообщение, и не требуется вызов
		DefWindowProc
LASTKEY	4	Код последнего введенного с клавиатуры символа
CONSOLEX	4	Координата Х консоли
CONSOLEY	4	Координата Ү консоли
CONSOLEL	4	Максимальная длина текста, выводимого в консоли
MAXX	4	Максимальное количество пикселов в текстовой
		части экрана (используется при автоматическом
		переводе строки)
OPAQUE	4	Логическая переменная, управляющая
		прозрачностью фона при выводе текста
		встроенными средствами
MOUSE-X	4	Координата Х мыши
MOUSE-Y	4	Координата Ү мыши
MOUSE-Z	4	Координата Z мыши (при наличии колеса
		прокрутки). При сообщении от колеса прокрутки в
		переменную записывается 120 или -120,
		являющиеся результатами, возвращаемыми
		функцией, определяющей направление смещения
TIMED INTERMAT	1	колеса прокрутки.
TIMER_INTERVAL	4006	Интервал вызова векторного слова <timer></timer>
SYMBOLS CAN DISPATCH	4096	Начальный адрес встроенного знакогенератора
CAN-DISPATCH	4	Логическая переменная, разрешает обработку
DOTATEANOLE	1	введенных чисел словом DISPATCH-NUMBER
ROTATEANGLE	4	Системная переменная для вызова функций
		OpenGL

glX	4	Системная переменная для вызова функций
13.7	1	OpenGL
glY	4	Системная переменная для вызова функций
		OpenGL
glZ	4	Системная переменная для вызова функций
		OpenGL
INPUTBUF	258	Буфер для ввода данных словом
		INPUTDIALOG
MAJOR-VERSION	4	Константа – номер версии
MINOR-VERSION	4	Константа – номер версии
SUBVERSION	4	Константа – номер версии
BUILD-VERSION	4	Константа – номер версии

Константы

TRUE

FALSE

RED

GREEN

BLUE

BLACK

WHITE

1.0

10.0

PΙ

FPI

Структуры управления и объявление объектов

Имя	Стековая	Описание
	нотация	
:		Начать определение нового слова с именем, взятым
		из входного потока.
•		Завершить определение слова.
PROC		Начать определение нового слова с именем, взятым
		из входного потока. То же, что :
ENDPROC		Завершить определение слова. То же, что ;
		Перевести транслятор в режим интерпретации.
		Слово немедленного исполнения.
]		Перевести транслятор в режим компиляции.
CONSTANT	C	Создать слово, кладущее на стек константу.
		Значение константы снимается со стека в момент
		исполнения слова CONSTANT. Имя слова
		выбирается из входного потока.
VARIABLE		Создать слово, кладущее на стек начальный адрес
		области памяти. Имя слова выбирается из входного
		потока. Зарезервировать в памяти данных место
		для одной ячейки.
FLOAT		Создать слово, кладущее на стек начальный адрес

		области памяти. Имя слова выбирается из входного потока. Зарезервировать в памяти данных место для одного числа в формате double float (8 байт).
ARRAY	Size	Создать слово, кладущее на стек начальный адрес области памяти. Имя слова выбирается из входного потока. Зарезервировать в памяти данных место для Size ячеек.
"	Str	Выбрать из входного потока строку, завершенную символом кавычки ("). Положить на стек адрес первого символа строки, завершенной символом с кодом 0
QUAN		Создать слово, кладущее на стек значение переменной. Переменной присваивается начальное значение 0. Имя слова выбирается из входного потока. Запись в переменную осуществляется словом ТО
VALUE	Value	Создать слово, кладущее на стек значение переменной. Переменной присваивается начальное значение, снимаемое со стека. Имя слова выбирается из входного потока. Запись в переменную осуществляется словом ТО
VECT		Создать слово-переменную, передающее управление на адрес, записанный в нее. Переменной присваивается начальное значение, указывающее на NOOP. Имя слова выбирается из входного потока. Запись в переменную осуществляется словом ТО. Чтение записанного адреса без его исполнения осуществляется словом FROM
CREATE		Создать слово, имя которого выбирается из входного потока, с семантикой «положить на стек данных адрес первого свободного байта в области данных, как он был известен на момент создания слова»
DOES>		Добавить в семантику определения переход на текущий адрес области кода.

Пример:

VARIABLE A
0 CONSTANT НОЛЬ
FLOAT X
100 ARRAY TABLE[]
0 VALUE Y
QUAN Z
VECT MyFunction

: DOUBLECONSTANT CREATE,, DOES> DUP @ SWAP 4 + @;

2 3 DOUBLECONSTANT CC

Имя Стековая О	Описание
----------------	----------

	нотация	
VOCABULARY		Создать новый словарь в текущем словаре, выбрав
		его имя из входного потока. Семантикой
		создаваемого слова является «установить данный
		словарь контекстным».
DEFINITIONS		Сделать контекстный словарь текущим.
FORTH		Установить FORTH контекстным словарем.

Пример:

VOCABULARY MyVoc

MyVoc **DEFINITIONS** // сделать MyVoc контекстным и текущим

: WordInMyVoc ; // добавляется слово в MyVoc

FORTH // сделать FORTH контекстным

WordFromForth // для поиска доступны только слова из FORTH : WordStillInMyVoc ; // добавление слов происходит в MyVoc

DEFINITIONS // теперь и поиск, и добавление происходят только для FORTH

Имя	Стековая	Описание
	нотация	
IF	T	Слово немедленного исполнения. Компилирует
		операцию «проверить число на стеке, выполнить
		переход вперед, если условие не выполняется».
THEN		Слово немедленного исполнения. Компилирует код
		для завершения оператора условного выполнения
ELSE		Слово немедленного исполнения. Компилирует код
		для завершения ветки оператора условного
		выполнения, отмечает начало ветки,
		выполняющейся при условии ЛОЖЬ на стеке.

Пример:

: NEWWORD

22 + 4 = IF " 2 + 2 = 4" PRINT **THEN**

;:

NEWWORD

2 2 + 4 = **IF** " 2 + 2 = 4" PRINT **ELSE** " 2 + 2 <> 4" PRINT **THEN**

•

Имя	Стековая	Описание
	нотация	
BEGIN		Слово немедленного исполнения. Компилирует
		операцию «отметить начало цикла с проверкой
		условия выхода»
AGAIN		Слово немедленного исполнения. Компилирует
		безусловный переход к началу цикла
UNTIL		Слово немедленного исполнения. Компилирует
		переход к началу цикла, если на стеке ЛОЖЬ
WHILE		Слово немедленного исполнения. Компилирует
		операцию «выполнять тело цикла, если на стеке
		ИСТИНА»
REPEAT		Слово немелленного исполнения. Компилирует

переход к началу цикла

Пример:

BEGIN

" Бесконечный цикл" PRINT

AGAIN

BEGIN

"Выполняется 10 раз" PRINT 1 + DUP 10 =

UNTIL

Пример:

0

BEGIN

DUP 10 <

WHILE

1 +

REPEAT

Имя	Стековая	Описание
	нотация	
DO	end start	Слово немедленного исполнения. Сформировать код начала цикла со счетчиком, берущего со стека начальное и предельное значения. Цикл НЕ выполняется для предельного значения.
FOR	start	Слово немедленного исполнения. Начать цикл со счетчиком, сняв со стека начальное значение и установив предельное в 0. Цикл выполняется для предельного значения счетчика.
LOOP		Слово немедленного исполнения. Завершить итерацию цикла со счетчиком, увеличив счетчик на 1.
+LOOP	N	Слово немедленного исполнения. Завершить итерацию цикла со счетчиком, увеличив счетчик на N
NEXT		Слово немедленного исполнения. Завершить итерацию цикла со счетчиком, уменьшив счетчик на 1.
Ι	I	Положить на стек текущее значение счетчика.
J	J	Положить на стек текущее значение счетчика объемлющего цикла
K	K	Положить на стек текущее значение счетчика второго объемлющего цикла
IJ	J*Imax + I	Положить на стек текущее значение выражения J*Imax + I
IMAX	Imax	Положить на стек предельное значение счетчика цикла
IADDR	Iaddr	Положить на стек адрес начала итерации цикла

Пример: " Печатаем числа 0 – 9" PRINT

10 0 **DO**

Ι.

LOOP

" Обратный отсчет" PRINT

10 **FOR**

Ι.

NEXT

" Печатаем четные числа" PRINT

20 0 **DO**

Ι.

2 **+LOOP**

Имя	Стековая	Описание
	нотация	
ТО	X	Снять число со стека и записать его в QUAN,
		VALUE или VECT- переменную, имя которой
		выбирается из входного потока. Слово работает как
		в режиме интерпретации, выполняя запись, так и в
		режиме компиляции, компилируя код для
		выполнения этой операции.
AS	X	То же, что ТО
+TO	X	Снять число со стека и увеличить на эту величину
		значение QUAN, VALUE или VECT- переменной,
		имя которой выбирается из входного потока. Слово
		работает как в режиме интерпретации, выполняя
		запись, так и в режиме компиляции, компилируя
		код для выполнения этой операции.
FROM		Положить на стек содержимое QUAN, VALUE или
		VECT-переменной, имя которой выбирается из
		входного потока. Слово немедленного исполнения.
		Слово предназначено для чтения текущего
		значения VECT-переменной, так как упоминание
		имени такой переменной без слова FROM приводит
		к исполнению кода с адреса, хранящегося в этой
		переменной.
1		Выбрать имя слова из входного потока. Положить
		на стек адрес начала кода этого слова.
[']		Выбрать имя слова из входного потока. Положить
' '		на стек адрес начала кода этого слова. Слово
		немедленного исполнения.
USE		То же, что [']
		10 Me, 110 []
CASE	N	Скомпилировать код «начать оператор выбора по
		селектору». Величина-селектор снимается со стека.
		Слово немедленного исполнения.
ENDCASE		Скомпилировать код, завершающий управляющую
		конструкцию выбора по селектору. Слово
		немедленного исполнения.
OF	X	
OI.	Λ	Скомпилировать код, проверяющии число на

		вершине стека, и исполняющий код до слова
		ENDOF или BREAK, если это число равно
		значению-селектору. Слово немедленного
		исполнения.
ENDOF		Скомпилировать код, завершающий текущую ветвь
		управляющей конструкции выбора по селектору.
		Слово немедленного исполнения.
BREAK		Скомпилировать код, завершающий текущую ветвь
		управляющей конструкции выбора по селектору и
		прекращающий проверки на текущем уровне
		вложенности CASE. Слово немедленного
		исполнения.
>OF	N	Скомпилировать код, проверяющий число на
		вершине стека, и исполняющий код до слова
		ENDOF или BREAK, если это число больше
		значения-селектора. Слово немедленного
		исполнения.
<of< td=""><td>N</td><td>Скомпилировать код, проверяющий число на</td></of<>	N	Скомпилировать код, проверяющий число на
		вершине стека, и исполняющий код до слова
		ENDOF или BREAK, если это число меньше
		значения-селектора. Слово немедленного
		исполнения.
<of></of>	Nmin, Nmax	Скомпилировать код, проверяющий два числа на
		вершине стека и исполняющий код до слова
		ENDOF или BREAK, если значение-селектор
		находится в диапазоне NminNmax включительно.
		Слово немедленного исполнения.

Пример.

VARIABLE X

Файловые операции

Имя	Стековая	Описание
	нотация	
L	Str	Загрузить и транслировать файл, заданныйименем.
OPEN	Str hFile	Открыть существующий файл, заданный именем,
		для чтения и вернуть на стек идентификатор файла.
OPENRW	Str hFile	Открыть существующий файл, заданный именем,
		для чтения и записи и вернуть на стек
		идентификатор файла.

NEWFILE	Str hFile	Создать файл, заданный именем, для чтения и вернуть на стек идентификатор файла. Если файл с
		таким именем существует, уничтожить его и
GY C GT	1.771	создать файл нулевой длины.
CLOSE	hFile	Закрыть файл, заданный идентификатором.
FILESIZE	hFile size	Вернуть размер файла, заданного идентификатором, в байтах
READFILE	hFile, Buf, count	Читать count байт из файла, заданного идентификатором hFile, в память с начальным адресом Buf
READCHAR	hFile Char	Прочитать один символ из файла, заданного идентификатором hFile и положить его код на стек данных.
READLINE	hFile, Buf	Читать одну строку из файла, заданного идентификатором hFile, в память с начальным адресом Buf.
WRITEFILE	hFile, Buf, count	Записатьь count байт из файла, заданного идентификатором hFile, из памяти с начальным адресом Buf
WRITECHAR	hFile, char	Записать символ char в файл, заданный идентификатором hFile.
HF-OUT	A	Положить на стек VALUE-переменную – идентификатор файла для быстрого вывода.
EMITF	C	Записать символ, кодируемый значением со стека данных, в файл с идентификатором HFOUT
PRINTF	Str	Печатать строку, заданную адресом первого символа и завершаемую нулем, в файл с идентификатором HF-OUT
CRF		Вывести символы перевода строки в файл с идентификатором HF-OUT
.F	X	Печатать число с вершины стека в файл с идентификатором HF-OUT
U.F	uA	Печатать число с вершины стека в беззнаковом формате в файл с идентификатором HF-OUT
F.F	F: X	Печатать число с вершины стека сопроцессора в файл с идентификатором HF-OUT

Управление программой

Имя	Стековая	Описание
	нотация	
NOOP		Нет операции
\		Игнорировать текст до конца строки
//		Игнорировать текст до конца строки
EXECUTE	A	Выполнить слово, заданное адресом на стеке
BRANCH,	A	Скомпилировать переход к адресу А
CALL,	A	Скомпилировать вызов по адресу А
LIT,	D	Скомпилировать литерал D
[COMPILE]		Выбрать из входного потока слово и
		скомпилировать его вызов, независимо от
		наличия у слова признака немедленного

		исполнения
BYE		Выйти из программы. Векторное слово. При
DIE		1 1 1 1
		выходе освобождаются области памяти кода и
DVIE		данных.
BYE1		Вариант слова ВҮЕ, установленный при старте
		программы.
HERE	Adr	Положить на стек адрес первого свободного
		байта в области памяти данных.
[C]HERE	Adr	Положить на стек адрес первого свободного
		байта в области памяти кода.
PARSE	Str	Удалить ведущие разделители. Выделить из
		входного потока очередной токен, ограниченный
		пробелом или символом перевода строки.
INPUT	Adr	Вызвать диалоговое окно для ввода значения
	1 141	переменной. Если в окне нажата кнопка ОК,
		проверить возможность перевода строки в целое
		число и записать его по адресу Adr. Если
		1
		форматное преобразование невозможно,
		повторить запрос. Если нажата кнопка Cancel,
EDIDITE	A 1	выйти из диалога и не производить перезапись.
FINPUT	Adr	Вызвать диалоговое окно для ввода значения
		вещественной переменной. Если в окне нажата
		кнопка ОК, проверить возможность перевода
		строки в вещественное число и записать его по
		адресу Adr. Если форматное преобразование
		невозможно, повторить запрос. Если нажата
		кнопка Cancel, выйти из диалога и не
		производить перезапись.
SINPUT	Adr	Вызвать диалоговое окно для ввода текста. Если
		в окне нажата кнопка ОК, записать полученную
		строку по адресу Adr в формате ASCIIZ. Если
		нажата кнопка Cancel, выйти из диалога и не
		производить перезапись.
INPUTDIALOG	Btn	Вызывает диалоговое окно ввода текстовой
I W C I DIN LOG	Bill	строки. Возвращает на стеке 0, если нажата
		кнопка «Отмена», и 1, если нажата кнопка «ОК».
		1
		Размещает полученную строку по адресу INPUTBUF
I O A DI IDD A DV	C: 1 D11	
LOADLIBRARY	Str – hDll	Загрузить динамическую библиотеку, заданную
		адресом первого символа, вернув на стеке
		идентификатор библиотеки.
GETPROCADDRE	hDll, Str - Adr	По идентификатору библиотеки и имени
SS		функции, заданной адресом первого символа,
		вернуть исполняемый адрес этой функции.
API0	Addr – X	Вызвать функцию АРІ, заданную ее адресом, без
		параметров. Результат выполнения функции
		вернуть на стек данных.
API1	A, Addr – X	Вызвать функцию АРІ, заданную ее адресом, с
	, =	одним параметром А, находящимся на стеке
		данных. Результат выполнения функции вернуть
		на стек данных.
API2	A, B, Addr – X	Вызвать функцию АРІ, заданную ее адресом, с
Al 14	Λ , D , Λ uul $-\Lambda$	рызвать функцию Агт, заданную ее адресом, с

	1	<u> </u>
		двумя параметрами, находящимися на стеке
		данных. Порядок записи параметров в стековой
		нотации слова соответствует порядку записи в
		прототипе вызова функции. Результат
		выполнения функции вернуть на
		стек данных.
API3	A, B, C, Addr - X	Вызвать функцию АРІ, заданную ее адресом, с
		тремя параметрами, находящимися на стеке
		данных. Порядок записи параметров в стековой
		нотации слова соответствует порядку записи в
		прототипе вызова функции. Результат
		выполнения функции вернуть на
		стек данных.
API4	A, B, C, D, Addr	Вызвать функцию АРІ, заданную ее адресом, с
		четырьмя параметрами, находящимися на стеке
	X	данных. Порядок записи параметров в стековой
		нотации слова соответствует порядку записи в
		прототипе вызова функции. Результат
		выполнения функции вернуть на стек данных.
API	A, An, N, Addr	Вызвать функцию API, заданную ее адресом, с N
		параметрами, находящимися на стеке данных.
	X	Порядок записи параметров в стековой нотации
		слова соответствует порядку записи в прототипе
		вызова функции. Допускается указывать 0
		параметров. Результат выполнения функции
		вернуть на стек данных.
hInstance	hInstance	Идентификатор запущенного экземпляра
		приложения
hwnd	hwnd	Идентификатор окна приложения
11,1110	1177110	12-Annual of Original Internation

Печать и графика

Имя	Стековая	Описание
	нотация	
	A	Печать числа со стека
U.	uA	Печать числа со стека данных как числа без знака.
F.	F: X	Печать числа со стека сопроцессора в инженерном
		формате.
EMIT	C	Печать символа, заданного его кодом; векторное
		слово.
EMIT1	C	Вариант слова ЕМІТ, установленный по
		умолчанию.
PRINT	Str	Печать строки, заданной адресом первого символа
		и завершаемой кодом ASCII 0
COUNT	Str count	Определить количество символов в строке,
		заданной адресом первого символа. Конец строки
		определяется по байту-ограничителю 0.
TYPE	Str, count	Печать строки, заданной адресом первого символа
		и длиной
,,		Печатать строку, завершаемую кавычкой. Строка
		выбирается из входного потока, т.е. следует за

		словом ."
CR		Выполняет перевод строки
PIXEL	X, Y, Color	Установить пиксел с координатами X, Y цветом
THEE	11, 1, 00101	Color. Векторное слово.
PIXEL1	X, Y, Color	Вариант слова РІХЕЬ, установленный по
TIXLLI	A, 1, Color	умолчанию
GETPIXEL	X, Y Color	Вернуть цвет пиксела в координатах X, Y.
GETTIXEL		Векторное слово.
GETPIXEL1	X, Y Color	Вариант слова GETPIXEL, установленный по молчанию
CLS		Очистить внутренний экранный буфер.
3D		Векторное слово, вызывается после копирования
		внутреннего буфера на экран, предназначено для наложения трехмерной сцены поверх двумерного буфера.
GOTOXY	X, Y	Установить текстовый курсор в позицию Row, Col (позиция отсчитывается в знакоместах)
WHEREXY	- X, Y	Вернуть позицию текстового курсора в координатах Row, Col (позиция отсчитывается в знакоместах)
WHEREX	- X	Вернуть координату Row текстового курсор (позиция отсчитывается в знакоместах)
WHEREY	- Y	Вернуть координату Col текстового курсора (позиция отсчитывается в знакоместах)
TEXTXY	X, Y	Установить текстовый курсор в позицию X, Y
WILLDETEXTY	37. 37	(позиция отсчитывается в пикселях)
WHERETEXTX Y	- X, Y	Вернуть координаты текстового курсора X, Y (позиция отсчитывается в пикселях)
SETCOLOR	Color	Установить цвет для отображения символов
SETBGCOLOR	BGColor	Установить фон для отображения символов
GETCOLOR	Color	Вернуть на стек текущий цвет для отображения
GETBGCOLOR	BGColor	вернуть на стек текущий цвет для отображения фона символов
HLINE	X, Y, len, Color	Рисовать горизонтальную линию из позиции X, Y, длиной len и цветом Color
VLINE	X, Y, len, Color	Рисовать вертикальную линию из позиции X, Y, длиной len и цветом Color
DECIMAL		Установка десятичной системы счисления
HEX		Установка шестнадцатеричной системы счисления
BIN		Установка двоичной системы счисления
3DROTATE		Выполнить вращение трехмерной сцены.
22101111		Аргументы должны быть заданы в системных
		переменных ROTATEANGLE glX glY glZ в
		формате short float.
3DTRANSLATE	1	Выполнить перенос координат трехмерной сцены.
		Аргументы должны быть заданы в системных
DEDD ATT		переменных glX glY glZ в формате short float.
REDRAW		Форсировать перерисовку экранного буфера и трехмерной сцены.
\$		Обработать входные сообщения, затем
		-

Векторизованные слова

Quark-Forth широко использует векторизацию словарных статей. Слова, имеющие на практике альтернативные варианты реализации, объявлены в трансляторе как векторные (VECT), что позволяет в ходе выполнения программы изменять адрес кода, который будет выполнен при их упоминании. Важным свойством векторного слова является то, что код, вызывающий такое слово, обращается не к статически скомпилированному адресу, а к векторному слову, выполняющему переход к адресу, хранящемуся в переменной. Это позволяет, например, описать обработчик сообщений Windows таким образом, что он вызывает векторизованные словарные статьи, которые при старте Quark-Forth не выполняют никаких действий, но после записи в векторные слова адресов обработчиков эти обработчики будут автоматически вызываться без необходимости переписывания цикла обработки сообщений.

Список векторизованных слов

```
Сообщения при нажатии функциональных и специальных клавиш.
```

K_F12 K_SHIFT_F12 K_CTRL_F12 K_ALT_F12

K F11 K SHIFT F11 K CTRL F11 K ALT F11

K F10 K SHIFT F10 K CTRL F10 K ALT F10

K F9 K SHIFT F9 K CTRL F9 K ALT F9

K_F8 K_SHIFT_F8 K_CTRL_F8 K_ALT_F8

K F7 K SHIFT F7 K CTRL F7 K ALT F7

K F6 K SHIFT F6 K CTRL F6 K ALT F6

K F5 K SHIFT F5 K CTRL F5 K ALT F5

K F4 K SHIFT F4 K CTRL F4

K F3 K SHIFT F3 K CTRL F3 K ALT F3

K F2 K SHIFT F2 K CTRL F2 K ALT F2

K F1 K SHIFT F1 K CTRL F1 K ALT F1

K PGDOWN K SHIFT PGDOWN K CTRL PGDOWN K ALT PGDOWN

K PGUPK SHIFT PGUPK CTRL PGUPK ALT PGUP

K END K SHIFT END K CTRL END K ALT END

K_HOME K_SHIFT_HOME K CTRL HOME K ALT HOME

K DOWN K SHIFT DOWN K CTRL DOWN

K UPK SHIFT UPK CTRL UP

K RIGHT K SHIFT RIGHT K CTRL RIGHT

K LEFT K SHIFT LEFT K CTRL LEFT

K DELK SHIFT DELK CTRL DEL

K INS K SHIFT INS K CTRL INS

K ENTER

K ESC

K BACKSPACE

KEYDOWN – вызывается при получении сообщения wm_keydown, перед этим код символа записывается в переменную LASTKEY

KEYUP – вызывается при получении сообщения wm_keyup, перед этим код символа записывается в переменную LASTKEY

K_CHAR (вызывается при получении сообщения wm_char, перед этим код символа записывается в переменную LASTKEY)

Сообщения от мыши.

- <MOUSE_MOVE> вызывается при перемещении мыши
- <MOUSE LEFT> вызывается при нажатии левой кнопки мыши
- <MOUSE RIGHT> вызывается при нажатии правой кнопки мыши
- <MOUSE DBLLEFT> вызывается при двойном нажатии левой кнопки мыши
- <MOUSE DBLRIGHT> вызывается при двойном нажатии правой кнопки мыши
- <MOUSE LEFT UP> вызывается при отпускании левой кнопки мыши
- <MOUSE RIGHT UP> вызывается при отпускании правой кнопки мыши
- <MOUSE-WHEEL> вызывается при прокрутке колеса мыши

Прочие сообщения

- <ТІМЕR> вызывается в процессе обработки сообщений системного таймера
- <DEBUG> вызывается после исполнения каждого слова, если оно было скомпилировано при установленной в ИСТИНУ переменной DEBUG
- ОК вызывается после обработки каждой строки
- DISPATCH-FNUMBER вызывается после помещения на стек числа с плавающей точкой DISPATCH-NUMBER вызывается после помещения на стек целого числа

Слова DISPATCH-FNUMBER и DISPATCH-NUMBER вызываются только при ненулевом значении переменной CAN-DISPATCH.

<WINDOW RESIZE> - вызывается при изменении размеров окна программы.

WINMSG — вызывается при получении любого сообщения от Windows. Параметры сообщения помещаются в переменные WMSG, WPARAM, LPARAM. Переменная PROCESSED должна содержать ИСТИНУ (не ноль), если дальнейшая обработка сообщения функцией DefWindowProc не требуется.

OpenGL

Quark-Forth основан на использовании «виртуального экрана» - хранящемся в памяти массиве, описывающем цвета пикселей в формате 2048x2048x32bpp. Версия транслятора в виде динамически загружаемой библиотеки предусматривает, что основная программа самостоятельно отобразит содержимое этой области памяти на экране в требуемом формате. Версия в виде исполняемого файла использует библиотеку OpenGL для отображения содержимого виртуального экрана в окне графического приложения.

Список констант OpenGL, доступных в ядре.

- GL LIGHT MODEL TWO SIDE
- GL BACK
- **GL FRONT**
- **GL POSITION**
- **GL SHININESS**
- **GL EMISSION**
- GL SPECULAR
- GL AMBIENT AND DIFFUSE
- GL DIFFUSE
- **GL AMBIENT**
- GL FLAT
- GL COLOR MATERIAL
- GL LIGHT1
- GL LIGHT0
- **GL LIGHTING**

GL_DEPTH_BUFFER_BIT

GL_COLOR_BUFFER_BIT

GL_DEPTH_TEST

GL POLYGON

GL_QUAD_STRIP

GL_QUADS

GL_TRIANGLE_FAN

GL TRIANGLE STRIP

GL_TRIANGLES

GL_LINE_STRIP

GL LINES

GL_POINTS

Версии документа

Версия и дата	Описание		
1.0	Начальная реализация документа		
1.1, 16/02/2010	Описание приведено в соответствие с версией 1.0.8.24		
1.2, 03/09/2010	Описание приведено в соответствие с версией 1.0.10.28		